Multivariate and Probabilistic Analyses of Sensory Science Problems explains the multivariate and probabilistic methods available to sensory scientists involved in product development or maintenance.
The techniques discussed address sensory problems such as:
- panel performance
- product profiling
- exploration of consumer data, including segmentation
- identifying drivers of liking
Multivariate and Probabilistic Analyses of Sensory Science Problems offers simple, easy-to-understand explanations of difficult statistical concepts and provides an extensive list of case studies with step-by-step instructions for performing analyses and interpreting the results.
Coverage includes:
- a refresher on basic multivariate statistical concepts
- use of a common data set throughout the text
- summary tables presenting the pros and cons of specific methods and the conclusions that may be drawn from using various methods
- sample program codes to perform the analyses and sample outputs
Contents
1: A description of sample datasets
- White Corn Tortilla Chips
- Muscadine Grape Juices
- Fried Mozzarella Cheese Stick Appetizers
- Datasets for panellist and panel performance evaluation
2: Panelist and Panel Performance a Multivariate Experience
- The multivariate nature of sensory evaluation
- Univariate approaches to panelist assessment
- Multivariate techniques for panelist performance
- Panel Evaluation through Multivariate Techniques
3: A Non-Technical Description of Preference Mapping
- Internal preference mapping
- External Preference Mapping (PREFMAP)
4: Deterministic extensions to preference mapping techniques
- Application and models available
5: Multidimensional scaling and unfolding and the application of probabilistic unfolding to model preference data
- Multidimensional Scaling (MDS) and Unfolding
- Probabilistic Approach to Unfolding and Identifying the Drivers of Liking®
6: Consumer Segmentation Techniques
- Methods Available
- Segmentation Methods using Hierarchical Cluster Analysis
7: Ordinal Logistic Regression Models in Consumer Research
- Limitations of ordinary least square regression
- Odds, odds ratio and logit
- Binary logistic regression
- Multinomial logistic regression
- Ordinal logistic regression
8: Risk assessment in sensory and consumer science
- Concepts of Quantitative Risk Assessment
- A Case Study: Cheese Sticks Appetizers
9: Application of MARS to Preference Mapping
- MARS Basics
- Setting Control Parameters and Refining Models
- Example of application of MARS
- A comparison with Partial Least Squares Regression
10: Analysis of Just About Right data
- Basics of Penalty Analysis
- Boot Strapping Penalty Analysis
- Use of MARS to model JAR data
- A proportional Odds/Hazards approach to diagnostic data analysis
- Use of dummy variables to model JAR data
Index